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Abstract
We study the dynamical stability of entanglement between two spin ensembles
in the presence of decoherence. For a comparative study, we consider two
cases: a single spin ensemble, and two ensembles linearly coupled to a
bath, respectively. In both circumstances, we assume the validity of the
Markovian approximation for the bath. We examine the robustness of the
state by examining the growth of the linear entropy which gives a measure
of the purity of the system. We find out macroscopic entangled states of two
spin ensembles can stably exist in a common bath. This result may be very
useful to generate and detect macroscopic entanglement in a common noisy
environment and even a stable macroscopic quantum memory.

PACS numbers: 03.65.Yz, 03.67.Pp, 03.65.Ta

1. Introduction

Quantum entanglement is a fundamental concept in quantum mechanics. It gives rise to the
Einstein–Podolsky–Rosen (EPR) paradox [1] and violates a generalization of Bell’s inequality
[2]. It is also the physical ingredient of quantum information processing (QIP) such as quantum
communication (including quantum teleportation [3] and dense coding [4], etc). To perform
quantum communication, it is required to generate entangled states in two distant locations [5].
Recently, entanglement has been generated between two separated atomic ensembles [6]. In
addition, quantum interfaces between light and atoms have been experimentally demonstrated
[7–9], in which the state of light was mapped onto collective excitations in atomic ensembles.
This may pave the way to implement ‘long-distance’ quantum communication [10].

Atomic ensembles can be described as an ensemble of spin-half particles [10], and
inevitably suffer from decoherence due to coupling to an external environment [11, 12]. This
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Figure 1. Two ensembles of spin-half particles are coupled to a common bath.

(This figure is in colour only in the electronic version)

may heavily hinder the generation of entanglement and thus affect the performance of a
quantum memory [10] with spin ensembles. It is thus crucial to study the robustness of the
entangled states of spin ensembles under decoherence effects.

Entanglement dynamics between a pair of spin-half particles coupled to two independent
baths have been studied [13, 14]. In this paper, we study two spin ensembles coupled to
independent baths, as well as two spin ensembles coupled to a common bath. Two well-
separated spin ensembles can be regarded as independently interacting with their respective
baths. In contrast, the two spin ensembles are effectively coupled to the same bath if their
separation is much shorter than the correlation length of the bath [15]. The schematic diagram
is shown in figure 1. In fact, the quantum behavior for coupling to independent baths is
dramatically different from the case of coupling to common baths (collective decoherence)
[15, 16]. It is very important to examine the essential different features of quantum
entanglement in these two decoherence models. This leads to better understanding
of entanglement under decoherence and inspires us to invent useful methods to preserve
the entanglement.

The effects of GHZ-type entangled states under decoherence have been studied [17]. Here
we investigate the sensitivity of the bipartite entangled states to the external environment. The
robustness of the states can be quantified by how long the purity of the spin ensembles can be
maintained. This can be measured by means of the growth of linear entropy [12, 18, 19]. In
the model of independent bath coupling, the rate of losing the purity of maximally entangled
systems are found to scale with the square of the degree of entanglement.

However, we found that the entangled states of the two ensembles can exist robustly in
a common bath. In particular, the singlet state can even form a decoherence-free subspace
(DFS) [20]. This result shows that a macroscopic entanglement can persistently exist in a
common noisy environment. It motivates the further studies of the macroscopic entanglement
formation in the physical systems with the common bath. This may be useful for QIP in
atom-chip based [21] and solid-state [22] systems which are required to perform short-ranged
quantum communication [23, 24]. For example, two atomic Bose–Einstein condensates can be
coupled to the phonon modes of an elongated condensate [25, 26] to mediate the entanglement
between them.
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2. Independent bath model

We study a decoherence model in which a spin ensemble is linearly coupled to an environment.
In general, the Hamiltonian of the total system can be written as [11]

H = H0 + HB + HI , (1)

where H0 and HB are the Hamiltonian of the system and the bath respectively, and HI describes
the system-bath interaction. We represent the spin ensemble in terms of the angular momentum
operators: J = (Jx, Jy, Jz). We choose the quantization axis in the z-direction such that
Jz|m〉 = m|m〉 and J 2|m〉 = j (j + 1)|m〉, where j = N/2 and N is the number of spin-half
particles. Here we consider the subspace for j = N/2 only because the atomic states are
totally symmetrized for a collection of identical spin-half particles [27]. The linear interaction
Hamiltonian HI

2 can be expressed in a general form as [11]

HI =
∑

α

Jα ⊗ Bα, (2)

where Bα is the bath operator and α = x, y and z.
We consider the system weakly interacting with the environment. Thus, we adopt the

Markovian approximation and the master equation of the system is of the form [11]

ρ̇ = −i[H0, ρ] +
∑
α,β

γαβ

[
JβρJα − 1

2
{JαJβ, ρ}

]
, (3)

where γαβ is the damping constant and α, β = x, y and z.
We can classify the decoherence model into three different cases. They are called one-,

two- and three-axis models, respectively. The one-axis model can be defined as exactly one
axis of the angular momentum system coupled to the bath, say z-axis. This model indeed gives
a realistic description of many quantum optical phenomena [11]. The two-axis model can be
defined as two axes coupled to the bath, but we presume that the coupling between the bath
and one of the spin components is much stronger than the couplings of the other axes. The
damping parameters can thus be written as γzz � γzx, γxx . In the three-axis model, all axes are
coupled to the bath and only one of axes are strongly coupled to the bath, i.e. γzz � γzα, γαβ

and α, β = x, y. The two- and three-axis models indeed provide a more general scenario for
spin ensembles coupling to a bath.

To study the robustness of the states under decoherence, we can examine the stability of
the growth of the linear entropy [12, 18]. The linear entropy provides a measure of the purity
of a system [12]. The linear entropy can be defined as [12]

Slin = 1 − tr(ρ2). (4)

A pure state gives a zero linear entropy Slin = 0 and 0 � Slin � 1. Starting with a pure state,
the rate of change of the linear entropy Ṡlin is −2tr(ρρ̇) [12].

Here we focus our investigation on the entropy production of early dynamics. This is
useful for us to examine the sensitivity of the system to the environment. According to the
master equation in equation (3), the rate of change of Slin, with an initial pure state, can
be expressed in terms of the expectation values of angular momentum operators at the time
t = 0:3

Ṡlin(t = 0) = 2
∑
α,β

γαβ(〈JαJβ〉 − 〈Jα〉〈Jβ〉). (5)

2 This model is general for the linear interaction between the system and the bath, in which all components of the
angular momentum system are coupled to the bath.
3 We can just substitute ρ̇ in equation (3) into the expression Ṡlin = −2tr(ρρ̇). This gives Slin = 2

∑
αβ tr(ρ2JαJβ −

ρJαρJβ). Obviously, the expression in equation (5) can be obtained with an initial pure state.
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Obviously, the eigenstates of Jz are in the pointer basis [28] and naturally form the DFS in the
one-axis model.

Now we study the robustness of the entangled states of two spin ensembles interacting
with their independent baths. We consider a general entangled state of the form

|�ent〉 =
Ñ∑

m=−Ñ

cm|m,−m〉, (6)

where Ñ = min{j1, j2} and cm is the probability coefficient. The pure-state entanglement can
be quantified by the von Neumann entropy which is defined as

EF = −tr(ρ1 ln ρ1), (7)

where ρ1 = tr2(ρ) is the reduced density matrix of ρ. Here the von Neumann entropy EF of
the state in equation (6) is −∑

m |cm|2 ln |cm|2. The scheme for producing this entangled state
has already been proposed in the context of Bose–Einstein condensates [29, 30]. It is useful
for entanglement-based quantum communications with Bose–Einstein condensates.

We consider the system starting with the entangled state in equation (6) which is an
eigenstate of the system. In the one-axis model, the rate of change of the linear entropy is

Ṡlin ≈ 2(γzz + γ ′
zz)

⎡
⎣∑

m

|cm|2m2 −
(∑

m

|cm|2m
)2

⎤
⎦ , (8)

where γzz and γ ′
zz are the two damping parameters for the two ensembles, respectively. For a

nearly maximal entangled state, the probability coefficient |cm| is roughly equal to 1/
√

2Ñ + 1.
This gives a value of the von Neumann entropy with ln |2Ñ + 1|. We can estimate the growth
of the entropy Ṡlin which is about 2(γzz + γ ′

zz)Ñ
2/3.4 Hence, the rate of the loss of purity

scales with the square of the degree of the entanglement (the Schmidt number, i.e. 2Ñ + 1
[31]). This means that the purity of macroscopic entanglement quickly vanishes when the
two spin ensembles interact with their independent baths. However, we do not claim that
the entanglement is completely lost as the purity is decreased. However, we can expect that
the entanglement of formation of mixed states [32] is negligible if the state becomes highly
‘mixed’.5

3. Common bath model

We consider the decoherence model of the two spin ensembles linearly coupling to a common
environment. The total Hamiltonian reads

H = H0 + HB + HI , (9)

where H0, HB and HI are the Hamiltonian of the system, the bath and the interaction between
them, respectively. We represent the ith spin ensemble in terms of the usual angular
momentum operators: Ji = (Jix, Jiy, Jiz), where i = 1, 2. We have Jiz|m〉i = m|m〉i
and J 2

i |m〉i = ji(ji + 1)|m〉i , where ji = Ni/2.

4 This quantity can be obtained by making use of the sum
∑n

k=1 k2 = n(n + 1)(2n + 1)/6. The upper bound of Ṡlin
is about 4(γzz + γ ′

zz)Ñ
3/3.

5 The definition of entanglement of formation for mixed states is [32]: Ec(ρ) = min
∑

i piS(ρi
1), where

S(ρ1) = −tr ρ1 ln ρ1 is the entropy, ρi
1 = tr2(|ψi〉〈ψi |) is the reduced density matrix of the ith pure ensemble

with the probability pi. The probability pi is of the order of j−1
i if the state becomes highly mixed. Thus, the entropy

Ec(ρ) is very small.
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Without loss of generality, the interaction Hamiltonian HI for coupling to a common bath
can be written as

HI = 1

2

∑
α

[λJ1α + (2 − λ)J2α] ⊗ Bα, (10)

where λ ∈ [0, 2] is a coupling parameter and Bα is the bath operator and α = x, y and z.
The common bath model is identical to the independent bath model if we set λ = 0 or 2. We
classify our decoherence model similar to the above section. We study the one-, two- and
three-axis models in which the two ensembles couple to the common bath.

We consider the system and the environment in the weakly coupling regime. This enables
us to adopt the Markovian approximation and write down the master equation as

ρ̇ = −i[H0, ρ] +
∑
α,β

γαβ

[
LβρLα − 1

2
{LαLβ, ρ}

]
, (11)

where Lα = [λJ1α + (2 − λ)J2α]/2 is the composite angular momentum operator and γαβ is
the damping constant. The rate of change of Slin, at the time t = 0, is given by

Ṡlin = 2
∑
α,β

γαβ(〈LαLβ〉 − 〈Lα〉〈Lβ〉). (12)

Note that the entangled state |�ent〉 in equation (6) was found to be very robust in the
collective decoherence [16]. We examine the robustness of the entangled state |�ent〉 in the
one-axis model and this entangled state |�ent〉 is an eigenstate of the system. The quantity Ṡlin

is given by

Ṡlin ≈ 2γzz(λ − 1)2

⎡
⎣∑

m

|cm|2m2 −
(∑

m

|cm|2m
)2

⎤
⎦ . (13)

We can estimate that Ṡlin is about 2γzz(λ − 1)2Ñ2/3 for a highly entangled state with
|cm| ≈ 1/

√
2Ñ + 1. This result is consistent with the rate of the growth of entropy in

the independent bath model. The losing rate of the purity also scales with the square of the
degree of the entanglement for highly entangled states. However, the rate of the growth of
the linear entropy can be dramatically reduced if the parameter λ is close to one. This is the
essential feature in the collective decoherence.

In the one-axis model, the decoherence can be completely quenched as λ tends to one.
However, the decoherence cannot be eliminated in the two-axis model even if the parameter
λ is equal to 1. We can minimize the decoherence rate in equation (12) if its variance (	Lx)

2

can be kept very small for λ = 1. This means that the number of particles in each ensemble is
nearly the same, i.e. j1 ≈ j2 ≈ j . The quantum variance (	Lx)

2 of the entangled state |�ent〉
is given by

(	Lx)
2 ≈

∑
m

[|cm|2 + Re(c∗
m−1cm)][j (j + 1) − m2]. (14)

The quantum fluctuation can be minimized if the condition is satisfied:

[|cm|2 + Re(c∗
m−1cm)] → 0. (15)

The variance (	Ly)
2 is of the same form of the variance (	Lx)

2 and also the cross correlation
〈LxLy + LyLx〉 is zero. Therefore, the entangled state is very stable even in the three-axis
model if condition (15) can be achieved. For instance, the quantum fluctuations are greatly
reduced by taking cm ≈ (2Ñ)−1/2 and Re(c∗

m−1cm) < 0. Apart from that, we consider another
entangled state, which also satisfies condition (15), with cm∝(−1)mexp[−κ(m ± j ′)2] (up to
a normalization constant), where κ is a positive number and j ′ ≈ j . Condition (15) can be
fulfilled if κ is much smaller than 1/2j ′.
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We proceed to study the robustness of eigenstates of the composite angular momentum
system under the ideal collective decoherence (λ = 1). In fact, the eigenstate of the composite
angular momentum system in the z-direction is formed a DFS in the one-axis model. The
composite eigenstate |L,M〉 can be written as

|L,M〉 =
j1,2∑

m1,2=−j1,2

CLM
j1m1j2m2

|m1,m2〉, (16)

where CLM
j1m1j2m2

= 〈m1,m2|L,M〉 is the Clebsch–Gordon coefficient and L = j1 + j2, j1 +
j2 − 1, . . . , |j1 − j2| and M = m1 + m2. The eigenstate |L,M = 0〉 is clearly an entangled
state for the two spin ensembles. The entangled pairs are formed with m1 = −m2 = m with
the total population number M = 0.

For the state |L,M = 0〉, we evaluate the quantity Ṡlin which gives γxxL(L + 1) and
(γxx + γyy)L(L + 1) in the two- and three-axis couplings, respectively. We can see that the
state |L = 0,M = 0〉 forms a DFS even in the three-axis linear model for Ṡlin = 0. Indeed,
this singlet state has been found to be decoherence-free [20] because it is totally symmetric
to the environment. This singlet state |L = 0,M = 0〉 gives out the maximal entanglement
with the von Neumann entropy EF = −ln |2j + 1| for cm = (−1)j−m/(2j + 1)1/2 and
m = −j,−j + 1, . . . , j − 1, j . Besides, the violation of the Bell inequality of large-spin
system with the singlet state |L = 0,M = 0〉 has been discussed [33].

We point out that it is difficult to produce the ideal singlet state |L = 0,M = 0〉 in
experiments because the number of particles cannot be kept to be the same in each ensemble.
Nevertheless, it can be easily shown that the states |L,M = 0〉 are also very robust in the
common bath for the low values of L. This means that the states with M = 0 are possible to be
prepared if the number of particles in the two ensembles is very close. Rather than detecting
the stable entangled state |�ent〉 in equation (6) in a common noisy environment, one can also
use them as quantum memory if suitable encoding and decoding mechanisms can be found.

4. Discussion

We have studied the robustness of states of early dynamics in the cases of a spin ensemble and
the two spin ensembles coupled to a bath, respectively. We have shown the totally different
features in losing the purity in these two cases. In the independent bath model, the initial
decay rate of the purity of maximally bipartite entangled states scales as the square of degree
of the entanglement. This result is useful for understanding decoherence of the entanglement
between two well-separated systems such as atomic ensembles coupled to two local radiation
reservoirs.

In contrast, the entanglement can be preserved much longer if the two spin ensembles are
coupled to a common bath. It provides a ground to detect macroscopic pure-state entanglement
in a common noisy environment and perform ‘short-distance’ quantum state transmission
[23, 24].
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